If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2l^2-2l-3000=0
a = 2; b = -2; c = -3000;
Δ = b2-4ac
Δ = -22-4·2·(-3000)
Δ = 24004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24004}=\sqrt{4*6001}=\sqrt{4}*\sqrt{6001}=2\sqrt{6001}$$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{6001}}{2*2}=\frac{2-2\sqrt{6001}}{4} $$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{6001}}{2*2}=\frac{2+2\sqrt{6001}}{4} $
| 8q+12=12 | | k/1.5=3 | | 2(5x+3)=5(4x-2)+3x | | 2h^2+4h+1=0 | | 4v+4(v–9)=-44 | | 2(l^2-l-3000)=0 | | -19x+12=-88 | | 3x+45=2x | | -24+2r=4-(3r-2) | | -5.8b+15.86=14.89-8.36 | | 3j=4j–4 | | 9x+4=-5x+18 | | (n+1)=2(n+10) | | 8s=-4+4s | | -4(k+-1)=16 | | 8+3(1d+7d)=32 | | 2w=10+w | | 3-4x=0-1x | | 8^x=232 | | 4y-3=39-2y | | -4w=-8+2w | | 2(-3x-6)=-5(x-2) | | 2(5x-1)=48 | | 7w+1=6w-1 | | 18x−3x3=0 | | 5j-3j+5=17 | | -2=u-7/8 | | 3(5x+1)=-5(4x-4) | | 8-2x=-3x+1 | | 15+12x=13x+5 | | 3x-8+x=-2x+x-10 | | 16/x^2-16=2/x-4 |